1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
// Copyright 2020 Shin Yoshida // // "LGPL-3.0-or-later OR Apache-2.0 OR BSD-2-Clause" // // This is part of spin-sync // // spin-sync is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // spin-sync is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with spin-sync. If not, see <http://www.gnu.org/licenses/>. // // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // // Redistribution and use in source and binary forms, with or without modification, are permitted // provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright notice, this // list of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. // IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, // INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT // NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. use std::cell::UnsafeCell; use std::fmt; use std::ops::{Deref, DerefMut}; use std::panic::{RefUnwindSafe, UnwindSafe}; use std::sync::atomic::{AtomicU8, Ordering}; use crate::misc::{PhantomMutex, PhantomMutexGuard}; use crate::result::{LockResult, PoisonError, TryLockError, TryLockResult}; /// A mutual exclusion primitive useful for protecting shared data. /// /// It behaves like std::sync::Mutex except for using spinlock. /// What is more, the constructor is a const function; i.e. it is possible to declare /// static Mutex<T> variable as long as the inner data can be built statically. /// /// This mutex will block threads waiting for the lock to become available. The /// mutex can also be statically initialized or created via a [`new`] /// constructor. Each mutex has a type parameter which represents the data that /// it is protecting. The data can only be accessed through the RAII guards /// returned from [`lock`] and [`try_lock`], which guarantees that the data is only /// ever accessed when the mutex is locked. /// /// # Poisoning /// /// The mutexes in this module implement a strategy called "poisoning" where a /// mutex is considered poisoned whenever a thread panics while holding the /// mutex. Once a mutex is poisoned, all other threads are unable to access the /// data by default as it is likely tainted. /// /// For a mutex, this means that the [`lock`] and [`try_lock`] methods return a /// `Result` which indicates whether a mutex has been poisoned or not. Most /// usage of a mutex will simply `unwrap()` these results, propagating panics /// among threads to ensure that a possibly invalid invariant is not witnessed. /// /// A poisoned mutex, however, does not prevent all access to the underlying /// data. The [`PoisonError`] type has an `into_inner` method which will return /// the guard that would have otherwise been returned on a successful lock. This /// allows access to the data, despite the lock being poisoned. /// /// [`new`]: #method.new /// [`lock`]: #method.lock /// [`try_lock`]: #method.try_lock /// [`PoisonError`]: type.PoisonError.html /// /// # Examples /// /// Protect a variable (non-atomically) and update it in worker threads. /// /// ``` /// use spin_sync::Mutex; /// use std::thread; /// /// const WORKER_NUM: usize = 10; /// /// // We can declare static Mutex<usize> variable because Mutex::new is const. /// static MUTEX: Mutex<usize> = Mutex::new(0); /// /// let mut handles = Vec::with_capacity(WORKER_NUM); /// /// // Create worker threads to inclement the value by 1. /// for _ in 0..WORKER_NUM { /// let handle = thread::spawn(move || { /// let mut num = MUTEX.lock().unwrap(); /// *num += 1; /// }); /// /// handles.push(handle); /// } /// /// // Wait for the all worker threads are finished. /// for handle in handles { /// handle.join().unwrap(); /// } /// /// // Make sure the value is incremented by the worker count. /// let num = MUTEX.lock().unwrap(); /// assert_eq!(WORKER_NUM, *num); /// ``` /// /// To recover from a poisoned mutex: /// /// ``` /// use spin_sync::Mutex; /// use std::sync::Arc; /// use std::thread; /// /// // Like std::sync::Mutex, it can be declare as local variable, of course. /// let mutex = Arc::new(Mutex::new(0)); /// let c_mutex = mutex.clone(); /// /// let _ = thread::spawn(move || -> () { /// // This thread will acquire the mutex first, unwrapping the result of /// // `lock` because the lock has not been poisoned. /// let _guard = c_mutex.lock().unwrap(); /// /// // This panic while holding the lock (`_guard` is in scope) will poison /// // the mutex. /// panic!(); /// }).join(); /// /// // Here, the mutex has been poisoned. /// assert_eq!(true, mutex.is_poisoned()); /// /// // The returned result can be pattern matched on to return the underlying /// // guard on both branches. /// let mut guard = match mutex.lock() { /// Ok(guard) => guard, /// Err(poisoned) => poisoned.into_inner(), /// }; /// /// *guard += 1; /// assert_eq!(1, *guard); /// ``` pub struct Mutex<T: ?Sized> { lock: AtomicU8, _phantom: PhantomMutex<T>, data: UnsafeCell<T>, } impl<T> Mutex<T> { /// Creates a new mutex in an unlocked state ready for use. /// /// unlike to `std::sync::Mutex::new`, this is a const function. /// It can be use for static variable. /// /// # Examples /// /// Declare as a static variable. /// /// ``` /// use spin_sync::Mutex; /// /// static MUTEX: Mutex<i32> = Mutex::new(0); /// ``` /// /// Declare as a local variable. /// /// ``` /// use spin_sync::Mutex; /// /// let mutex = Mutex::new(0); /// ``` pub const fn new(t: T) -> Self { Mutex { lock: AtomicU8::new(INIT), data: UnsafeCell::new(t), _phantom: PhantomMutex {}, } } /// Consumes this mutex and returns the underlying data. /// /// Note that this method won't acquire any lock because we know there is /// no other references to `self`. /// /// # Errors /// /// If another user panicked while holding this mutex, this call wraps /// the result in an error and returns it. /// /// # Examples /// /// ``` /// use spin_sync::Mutex; /// /// let mutex = Mutex::new(0); /// assert_eq!(0, mutex.into_inner().unwrap()); /// ``` pub fn into_inner(self) -> LockResult<T> { let is_err = self.is_poisoned(); let data = self.data.into_inner(); if is_err { Err(PoisonError::new(data)) } else { Ok(data) } } } impl<T: ?Sized> Mutex<T> { /// Blocks the current thread until acquiring the lock, and returns an RAII guard object. /// /// The actual flow will be as follows. /// /// 1. User calls this method. /// 1. Blocks until this thread acquires the exclusive lock. /// 1. Creates an RAII guard object. /// 1. Wraps the guard in `Result` and returns it. If this mutex has been /// poisoned, it is wrapped in an `Err`; otherwise wrapped in a `Ok`. /// 1. User accesses to the underlying data through the returned guard. /// (No other thread can access to the data then.) /// 1. The guard is dropped (falls out of scope) and the lock is released. /// /// # Errors /// /// If another user panicked while holding this mutex, this method call wraps /// the guard in an error and returns it. /// /// # Examples /// /// ``` /// use spin_sync::Mutex; /// /// let mutex = Mutex::new(0); /// /// let mut guard = mutex.lock().unwrap(); /// assert_eq!(0, *guard); /// /// *guard += 1; /// assert_eq!(1, *guard); /// /// assert_eq!(true, mutex.try_lock().is_err()); /// ``` pub fn lock(&self) -> LockResult<MutexGuard<T>> { loop { match self.do_try_lock() { s if is_locked(s) => std::thread::yield_now(), s if is_poisoned(s) => return Err(PoisonError::new(MutexGuard::new(self))), _ => return Ok(MutexGuard::new(self)), } } } /// Attempts to acquire this lock and returns an RAII guard object if succeeded. /// /// Behaves like [`lock`] except for this method returns an error immediately if another /// user is holding the lock. /// /// This method does not block. /// /// The actual flow will be as follows. /// /// 1. User calls this method. /// 1. Tries to acquire the lock. If failed (i.e. if the lock is being held,) /// returns an error immediately and this flow is finished here. /// 1. Creates an RAII guard object. /// 1. Wrapps the guard in `Result` and returns it. If this mutex has been /// poisoned, it is wrapped in an `Err`; otherwise wrapped in an `Ok`. /// 1. User accesses to the underlying data through the returned guard. /// (No other thread can access to the data then.) /// 1. The guard is dropped (falls out of scope) and the lock is released. /// /// # Errors /// /// - If another user is holding this mutex, [`TryLockError::WouldBlock`] is returned. /// - If this function call succeeded to acquire the lock, and if another /// user panicked while holding this mutex, [`TryLockError::Poisoned`] is returned. /// /// [`lock`]: #method.lock /// [`TryLockError::WouldBlock`]: type.TryLockError.html /// [`TryLockError::Poisoned`]: type.TryLockError.html /// /// # Examples /// /// ``` /// use spin_sync::Mutex; /// /// let mutex = Mutex::new(0); /// /// // try_lock() fails while another guard is. /// // It doesn't cause a deadlock. /// { /// let _guard = mutex.lock().unwrap(); /// assert_eq!(true, mutex.try_lock().is_err()); /// } /// /// // try_lock() behaves like lock() if no other guard is. /// { /// let mut guard = mutex.try_lock().unwrap(); /// assert_eq!(true, mutex.try_lock().is_err()); /// *guard += 1; /// } /// /// let guard = mutex.try_lock().unwrap(); /// assert_eq!(1, *guard); /// ``` pub fn try_lock(&self) -> TryLockResult<MutexGuard<T>> { match self.do_try_lock() { s if is_locked(s) => Err(TryLockError::WouldBlock), s if is_poisoned(s) => Err(TryLockError::Poisoned(PoisonError::new(MutexGuard::new( self, )))), _ => Ok(MutexGuard::new(self)), } } /// Tries to acquire lock and returns the lock status before updated. fn do_try_lock(&self) -> LockStatus { // Assume neither poisoned nor locked at first. let mut expected = INIT; loop { let desired = acquire_lock(expected); match self .lock .compare_and_swap(expected, desired, Ordering::Acquire) { s if s == expected => return s, // Succeeded s if is_locked(s) => return s, // Another user is holding the lock. s => expected = s, // Assumption was wrong. Try again. } } } /// Determines whether the mutex is poisoned or not. /// /// # Warnings /// /// This function won't acquire any lock. If another thread is active, /// the mutex can become poisoned at any time. You should not trust a `false` /// value for program correctness without additional synchronization. /// /// This behavior is same to `std::sync::Mutex::is_poisoned()`. /// /// # Examples /// /// ``` /// use spin_sync::Mutex; /// use std::sync::Arc; /// use std::thread; /// /// let mutex = Arc::new(Mutex::new(0)); /// assert_eq!(false, mutex.is_poisoned()); /// /// // Panic and poison the mutex. /// { /// let mutex = mutex.clone(); /// /// let _ = thread::spawn(move || { /// // This panic while holding the lock (`_guard` is in scope) will poison /// // the mutex. /// let _guard = mutex.lock().unwrap(); /// panic!("Poison here"); /// }).join(); /// } /// /// assert_eq!(true, mutex.is_poisoned()); /// ``` pub fn is_poisoned(&self) -> bool { // Don't acquire any lock; otherwise, this function will cause // a deadlock if the caller thread is holding the lock. let status = self.lock.load(Ordering::Relaxed); return is_poisoned(status); } /// Returns a mutable reference to the underlying data. /// /// Note that this method won't acquire any lock because we know there is /// no other references to `self`. /// /// # Errors /// /// If another user panicked while holding this mutex, this method call /// wraps the result in an error and returns it. /// /// # Examples /// /// ``` /// use spin_sync::Mutex; /// /// let mut mutex = Mutex::new(0); /// *mutex.get_mut().unwrap() = 10; /// assert_eq!(10, *mutex.lock().unwrap()); /// ``` pub fn get_mut(&mut self) -> LockResult<&mut T> { // There is no other references to `self` because the argument is // a mutable reference. // No lock is required. let data = unsafe { &mut *self.data.get() }; if self.is_poisoned() { Err(PoisonError::new(data)) } else { Ok(data) } } } impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.try_lock() { Ok(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(), Err(TryLockError::Poisoned(err)) => f .debug_struct("Mutex") .field("data", &&**err.get_ref()) .finish(), Err(TryLockError::WouldBlock) => { struct LockedPlaceholder; impl fmt::Debug for LockedPlaceholder { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str("<locked>") } } f.debug_struct("Mutex") .field("data", &LockedPlaceholder) .finish() } } } } impl<T> From<T> for Mutex<T> { fn from(t: T) -> Self { Mutex::new(t) } } impl<T: ?Sized + Default> Default for Mutex<T> { fn default() -> Self { Mutex::new(T::default()) } } /// An RAII implementation of a "scoped lock" of a mutex. /// /// When this structure is dropped (falls out of scope), the lock will be released. /// /// The data protected by the mutex can be accessed through this guard via its /// `Deref` and `DerefMut` implementations. /// /// This structure is created by [`lock`] and [`try_lock`] methods on /// [`Mutex`]. /// /// [`lock`]: struct.Mutex.html#method.lock /// [`try_lock`]: struct.Mutex.html#method.try_lock /// [`Mutex`]: struct.Mutex.html #[must_use = "if unused the Mutex will immediately unlock"] pub struct MutexGuard<'a, T: ?Sized + 'a> { mutex: &'a Mutex<T>, _phantom: PhantomMutexGuard<'a, T>, // To implement !Send. } impl<'a, T: ?Sized> MutexGuard<'a, T> { fn new(mutex: &'a Mutex<T>) -> Self { Self { mutex, _phantom: Default::default(), } } } impl<T: ?Sized> Drop for MutexGuard<'_, T> { fn drop(&mut self) { let old_status = self.mutex.lock.load(Ordering::Relaxed); debug_assert!(is_locked(old_status)); let mut new_status = release_lock(old_status); if std::thread::panicking() { new_status = set_poison_flag(new_status); } self.mutex.lock.store(new_status, Ordering::Release); } } impl<T: ?Sized> Deref for MutexGuard<'_, T> { type Target = T; fn deref(&self) -> &Self::Target { unsafe { &*self.mutex.data.get() } } } impl<T: ?Sized> DerefMut for MutexGuard<'_, T> { fn deref_mut(&mut self) -> &mut Self::Target { unsafe { &mut *self.mutex.data.get() } } } impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(&**self, f) } } // // Marker Traits // impl<T: ?Sized> UnwindSafe for Mutex<T> {} impl<T: ?Sized> RefUnwindSafe for Mutex<T> {} unsafe impl<T: ?Sized + Send> Send for Mutex<T> {} unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {} unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {} // // Constants to represent lock state // type LockStatus = u8; const INIT: LockStatus = 0; const LOCK_FLAG: LockStatus = 0x01; const POISON_FLAG: LockStatus = 0x02; const NOT_USED_MASK: LockStatus = 0xfc; #[inline] #[must_use] fn is_locked(s: LockStatus) -> bool { debug_assert_eq!(0, s & NOT_USED_MASK); (s & LOCK_FLAG) != 0 } #[inline] #[must_use] fn acquire_lock(s: LockStatus) -> LockStatus { debug_assert_eq!(false, is_locked(s)); s | LOCK_FLAG } #[inline] #[must_use] fn release_lock(s: LockStatus) -> LockStatus { debug_assert_eq!(true, is_locked(s)); s & !(LOCK_FLAG) } #[inline] #[must_use] fn is_poisoned(s: LockStatus) -> bool { debug_assert_eq!(0, s & NOT_USED_MASK); (s & POISON_FLAG) != 0 } #[inline] #[must_use] fn set_poison_flag(s: LockStatus) -> LockStatus { debug_assert_eq!(0, s & NOT_USED_MASK); s | POISON_FLAG }